AN ONLINE INTERACTIVE PLATFORM FOR THE TEACHING OF THE LABORATORY SAFETY

Tai Lee Kian
Nanyang Polytechnic Singapore
Presentation Outline

• Study Background
• Study Design
• Results
• Discussion
• Conclusion
Severe acute respiratory syndrome (SARS) in Singapore - update 2

SARS case in Singapore linked to accidental laboratory contamination

24 September 2003

Disease Outbreak Reported

The Singapore Ministry of Health has released the full report of an international investigation of a recent SARS case. The investigation, which followed laboratory confirmation on 8 September of SARS in a 27-year-old researcher, concluded that the patient most likely acquired the infection in a laboratory as the result of accidental contamination. The investigation found no evidence of further transmission and no reason to regard this single isolated case as a concern for international public health.

The case in Singapore marked the first case of SARS to be confirmed since the last known case in the world was detected and isolated in Taiwan, China, on 15 June. In addition to positive results in the laboratory tests for the SARS coronavirus, the SARS agent, subsequently confirmed by the US Centers for Disease Control and Prevention, the Singapore patient showed clinical signs consistent with a diagnosis of SARS.

The patient was conducting research on the West Nile virus in a laboratory that was...
The Lab Incidents

Yale student dies after her hair 'is caught in a machine' at chemistry laboratory

By DAILY MAIL REPORTER
UPDATED: 11:32 GMT, 14 April 2011

• Victim died from accidental asphyxia
• A memorial will be held before the end of term
• 'She was a brilliant student and extraordinary woman'

A senior Yale University science student has been killed after her hair got caught in a machine in a freak accident at a campus laboratory.

Michele Dufault, 22, died while using a fast-spinning lathe in the student machine shop at Sterling Chemistry Laboratory in New Haven, Connecticut.

Dufault, described as a 'brilliant student,' was an astronomy and physics major from Massachusetts and a member of the Yale Precision Marching Band.

She was working on a project in the basement of the laboratory where students and staff build or modify research instruments when the tragedy happened.

Her hair is thought to have been caught in the machine's rotating drive and dragged her onto it.

She died from accidental asphyxia by neck compression, according to the Connecticut medical examiner's office.
In the time that you’ve been conducting research in a laboratory setting, have you ever sustained an injury of any kind?

- No, 54%
- Total respondents, 2,374
- Yes, on more than one occasion, 21%
- Yes, once, 25%

Bonamy Finch

suggests researchers not as safe as they feel’, Nature 493, 9-10.
SOURCE: Center for Laboratory Safety, UCLA/NPG/Bonamy Finch

V N Richard (2013), 'Safety survey reveals lab risks Questionnaire suggests researchers not as safe as they feel', Nature 493, 9-10
Study to Examine Academic Lab-Safety Culture

Recent weeks have seen a pair of developments that could focus and intensify the national discussion of academic lab safety. On 9 May, after many delays, University of California, Los Angeles, professor Patrick Harran was arraigned on felony charges arising from the 2009 death of lab assistant Sheehan Sandhi. A judge entered four not guilty pleas on Harran’s behalf, setting the stage for the first-ever trial of a university lab chief on criminal safety charges. The judge is expected to decide in late June when the trial will begin.

Then, in a step that could have even broader ramifications than the unprecedented trial, on 15 May the National Academies held a public fact-finding meeting in Washington, D.C., kicking off a yearlong study of lab safety in nonindustrial institutions. Together, these events could transform the academic community’s understanding of faculty and institutional responsibility for safety and provide high-profile proposals for improving universities’ safety.

Only 46% of those who say their work requires a lab coat report wearing one at all times.
The Lab Safety Status of Y1 Life Sciences Students

- Improper Lab Attire: 69%
- Improper Lab Behaviour: 74%
- Improper Waste Disposal: 60%

eLFA2015
Objective

To develop an effective pedagogy for teaching of the laboratory safety among the students.
The Study Design

- Pre-implementation Assessment
- Implementation of Online Interactive Platform
- Post-implementation Assessment
The Study Design

What To Implement?
- Videos
- Game
- Animations
- Online Assessment

How To Implement?
- Create an interactive platform for a lab based scenario
- Incorporates the videos, game and animations to the scenario
- Include a link for the online assessment

Where To Implement?
- Upload the interactive platform for the lab based scenario onto Blackboard Learning System

www.free-power-point-templates.com
The Interactive Platform

- Do not handle door with gloves
- Click to view video
- Click to view video
- No eating in the lab
- Lab coat must be buttoned

- Click bin to play a game

- Click here for Lab Safety Assessment

- Do not throw chemical down the sink
- Do not use handphone in the lab
- Bags must be kept in the cupboard
- No water bottle on the bench

- Click to view video
Student’s Demographic

- DFS: Diploma in Food Science & Nutrition (28.67%)
- DMB: Diploma in Molecular Biotechnology (30.33%)
- DMC: Diploma in Medicinal Chemistry (17.33%)
- DPS: Diploma in Pharmaceutical Sciences (23.67%)

DFS: Diploma in Food Science & Nutrition
DMB: Diploma in Molecular Biotechnology
DMC: Diploma in Medicinal Chemistry
DPS: Diploma in Pharmaceutical Sciences

eLFA2015
Distribution of Marks

Pre-implementation

Post-implementation
Mean Marks Comparison

Pre-implementation: 25.40
Post-implementation: 44.13
Mean Marks Distribution

Pre-implementation

Post-implementation

Mean = 25.4
Std. Dev. = 6.174
N = 237

Mean = 44.13
Std. Dev. = 3.046
N = 300

eLFA2015
Mean Marks for Each Category

Before implementation

After implementation
Paired Samples T-Test

Paired Samples Test

<table>
<thead>
<tr>
<th>Paired Differences</th>
<th>Mean</th>
<th>Std. Deviation</th>
<th>Std. Error Mean</th>
<th>95% Confidence Interval of the Difference</th>
<th>t</th>
<th>df</th>
<th>Sig (2-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pair 1 Postanimation - Preanimation</td>
<td>18.928</td>
<td>6.455</td>
<td>.419</td>
<td>18.102 - 19.754</td>
<td>45.142</td>
<td>236</td>
<td>.000</td>
</tr>
</tbody>
</table>

- **Pre**: % Failed: 48.50%
- **Post**: % Failed: 0.30%

www.free-power-point-templates.com
Typical laboratory scenario
Vibrant and colorful

Allowed the simulation and the use of a variety of learning methods

Combination of read and clicks activities

Understand ‘why’ behind the ‘rules’

Combining multiple forms of media together

Games with a direct purpose of teaching
Discussion

Our laboratory based interactive platform providing an active participation of the students through the interactive features certainly offers an approach for students to learn and to construct their laboratory safety attitudes more efficiently.
Conclusion

We must redefine our role in teaching and learning of the laboratory safety.

We have to address the changing pattern of the needs of the students for the learning.
Our Team
THANK YOU